>> Lesestoff, interessante Berichte & Top-News

Recommender Systeme zur Absatzsteigerung: mayato nutzt erfolgreich clusterbasierte Ansätze aus dem Machine Learning

Passende Empfehlungen erhöhen die Absätze in Online-Shops deutlich, diese Erfahrung sammeln die Data Scientists der mayato GmbH in zahlreichen E-Commerce-Projekten. Dass sich diese Vorteile auch mit Recommender Systemen nutzen lassen, die auf clusterbasierten Ansätzen aus dem Machine Learning basieren, zeigt das Beratungsunternehmen mit den Schwerpunkten Business Intelligence, Data Science und Analytics anhand einer Anwendung aus dem Automotive Bereich. Caroline Kleist, Leiterin Analytics bei mayato, erklärt dazu: „Es müssen nicht zwangsläufig feingranulare Analysen durchgeführt werden. Einfache Algorithmen genügen im ersten Schritt, um ein Recommender System implementieren zu können, das den Absatz nachhaltig steigert.“

In dem aktuell vorgestellten Projekt segmentierte das Beratungshaus zunächst anhand historischer Verkaufsdaten Kunden und Produkte. Das Wissen um das Kaufverhalten in der Vergangenheit nutzten die Data Scientists anschließend, um eindeutige Präferenzen als Unterscheidungskriterien zur Erstellung von Kundenprofilen zu ermitteln. Die so generierten Profile dienen dann als Vergleichswerte für die aktiven Kunden der Online-Plattform. Kunden mit einer Mindestzahl an getätigten Käufen wurden daraufhin mit dem kMeans-Algorithmus, einem Data Mining-Verfahren des unüberwachten Lernens, geclustert. Die Ergebnisse daraus führten im ersten Schritt zu einer Neustrukturierung der vorhandenen Webseite und schließlich, nach weiteren Segmentierungen, zu 30 gut unterscheidbaren Produktclustern, die dann den entsprechenden Kunden zugeordnet werden können. Diese erhalten bei einem Besuch des Online-Shops gezielte Empfehlungen aus den für sie interessanten Produktgruppen. Uninteressante Angebote werden ausgeblendet. Monatliche Neuberechnungen halten das Modell stets auf dem neuesten Stand. Die detaillierte mayato Case Study dazu finden Sie unter https://www.mayato.com/case-studies/#e-commerce

Über CBTW Collaboration Betters The World

mayato ist spezialisiert auf Business Analytics. Von zahlreichen Standorten in Deutschland und Österreich aus arbeitet ein Team von erfahrenen Prozess- und Technologieberatern an Lösungen für Business Intelligence, Big Data und Analytics für ein breites Spektrum an Anwendungsgebieten und Branchen. Business Analysten und Data Scientists von mayato ermitteln auf der Basis dieser Lösungen für ihre Kunden relevante Zusammenhänge in Small und Big Data und prognostizieren zukünftige Trends und Ereignisse. Als Teil der Unternehmensgruppe Positive Thinking Company verfügt mayato über ein breites, internationales Netzwerk und ein technologisch und inhaltlich vielfältiges Leistungsportfolio. Nähere Infos unter www.mayato.com.

Firmenkontakt und Herausgeber der Meldung:

CBTW Collaboration Betters The World
Friedrichstraße 121
10117 Berlin
Telefon: +49 (30) 7001 4692-0
Telefax: +49 (30) 70014692-1
https://collaborationbetterstheworld.com/

Ansprechpartner:
Dagmar Ecker
Fachwirtin Public Relations
Telefon: +49 (6245) 9067-92
E-Mail: de@claro-pr.de
Katja Pétillon
Marketingleiterin
Telefon: +49 (170) 459-5297
Fax: +49 (30) 4174427010
E-Mail: katja.petillon@mayato.com
Für die oben stehende Pressemitteilung ist allein der jeweils angegebene Herausgeber (siehe Firmenkontakt oben) verantwortlich. Dieser ist in der Regel auch Urheber des Pressetextes, sowie der angehängten Bild-, Ton-, Video-, Medien- und Informationsmaterialien. Die United News Network GmbH übernimmt keine Haftung für die Korrektheit oder Vollständigkeit der dargestellten Meldung. Auch bei Übertragungsfehlern oder anderen Störungen haftet sie nur im Fall von Vorsatz oder grober Fahrlässigkeit. Die Nutzung von hier archivierten Informationen zur Eigeninformation und redaktionellen Weiterverarbeitung ist in der Regel kostenfrei. Bitte klären Sie vor einer Weiterverwendung urheberrechtliche Fragen mit dem angegebenen Herausgeber. Eine systematische Speicherung dieser Daten sowie die Verwendung auch von Teilen dieses Datenbankwerks sind nur mit schriftlicher Genehmigung durch die United News Network GmbH gestattet.

counterpixel